A Combinatorial Anabelian Result for Stable Log Curves over Log Points

Yuichiro Hoshi 5 July, 2021

RIMS Workshop

"Combinatorial Anabelian Geometry and Related Topics"

§1: Semi-graphs of Anabelioids of PSC-type

Σ : a nonempty set of prime numbers

Definition ·

k: an algebraically closed field of characteristic $\not\in \Sigma$

 X^{\log} : a stable log curve/an fs log scheme S^{\log} w/ $S = \operatorname{Spec}(k)$

Write:

(X,D): the pointed stable curve/k associated to X^{\log}

 $U_X \stackrel{\text{def}}{=} X^{\text{sm}} \cap (X \setminus D) \subseteq X$

 \mathbb{G} : the dual semi-graph of X^{\log}

v: a vertex of \mathbb{G}

 C_v : the irreducible component of X corresponding to v

 $X_v \stackrel{\mathrm{def}}{=} C_v \cap U_X$

e: an open edge of \mathbb{G} w/ the branch b that abuts to v

 C_e : the completion of X at the point corresponding to $e \cong \operatorname{Spec}(k[[t]])$

 $X_e \stackrel{\mathrm{def}}{=} C_e \setminus \{e\} \ (\cong \mathrm{Spec}(k[[t]][1/t]))$

 $\iota_b\colon X_e\to X_v$: the natural morphism corresponding to b

e: a closed edge of $\mathbb G$ w/ the two distinct branches $b_1,\,b_2$

that abut to v_1 , v_2 , respectively (possibly $v_1 = v_2$)

 C_e : the completion of X at the node corresponding to e (\cong Spec($k[[t_1, t_2]]/(t_1t_2)$)) Fix an isomorphism

$$X_{v_1} \overset{\text{``b_1''}}{\longleftarrow} \text{``Spec}(k[[t_1]][1/t_1])\text{''} \overset{\sim}{\longrightarrow} \text{``Spec}(k[[t_2]][1/t_2])\text{''} \overset{\text{``b_2''}}{\longrightarrow} X_{v_2}$$

$$C_e \overset{\text{``Immersion}}{\longleftarrow} C_e$$

 $X_e \stackrel{\text{def}}{=} \text{"Spec}(k[[t_1]][1/t_1]) \stackrel{\text{fixed}}{\cong} \text{Spec}(k[[t_2]][1/t_2])$ "

 $\iota_{b_i}\colon X_e\hookrightarrow X_{v_i}$: the natural morphism corresponding to b_i

Definition, continued

k: an algebraically closed field of characteristic $\not\in \Sigma$ X^{\log} : a stable log curve/an fs log scheme S^{\log} w/ $S = \operatorname{Spec}(k)$

(X, D): the associated pointed stable curve/k

 \mathbb{G} : the dual semi-graph of X^{\log}

$$X_v \stackrel{\text{def}}{=} C_v \cap U_X$$

v: a vertex of \mathbb{G} $X_v \stackrel{\text{def}}{=} C_v \cap U_X$ e: an open edge of \mathbb{G} w/ the branch b that abuts to v

$$X_e \stackrel{\text{def}}{=} C_e \setminus \{e\} \ (\cong \operatorname{Spec}(k[[t]][1/t]))$$

 $\iota_b \colon X_e \hookrightarrow X_v \colon \text{the closed immersion corresponding to } b$

e: a closed edge of \mathbb{G} w/ the two distinct branches b_1 , b_2 that abut to v_1 , v_2 , respectively (possibly $v_1 = v_2$)

$$X_e \stackrel{\mathrm{def}}{=} \mathrm{``Spec}(k[[t_1]][1/t_1]) \stackrel{\mathrm{fixed}}{\cong} \mathrm{Spec}(k[[t_2]][1/t_2])\mathrm{''}$$

 $\iota_{b_i} \colon X_e \hookrightarrow X_{v_i} \colon$ the closed immersion corresponding to b_i

Define a semi-graph $\mathcal{G}_{X^{\log}}^{\Sigma}$ of anabelioids as follows:

- \bullet the underlying semi-graph $\stackrel{\mathrm{def}}{=} \mathbb{G}$
- the anabelioid \mathcal{G}_v corresponding to a vertex $v \stackrel{\text{def}}{=} \Sigma\text{-F\'et}(X_v)$
- the anabelioid \mathcal{G}_e corresponding to an edge $e \stackrel{\text{def}}{=} \Sigma$ -Fét (X_e)
- the morphism $b_*: \mathcal{G}_e \to \mathcal{G}_v$ that corr's to the branch b of e abutting to v $\stackrel{\text{def}}{=} \mathcal{G}_e \to \mathcal{G}_v$ obtained by pulling back by ι_b , i.e., $\iota_b^* \colon \Sigma\text{-F\'et}(X_v) \to \Sigma\text{-F\'et}(X_e)$

Definition

 \mathcal{G} : a connected semi-graph of anabeliods

- $\Rightarrow \mathcal{B}(\mathcal{G})$: the connected anabelioid of $(S_v, \phi_e)_{v: \text{ a vertex, } e: \text{ a closed edge}}$, where
 - S_v : an object of the connected anabelioid \mathcal{G}_v
 - $\phi_e : b_1^* S_{v_1} \xrightarrow{\sim} b_2^* S_{v_2}$: an isomorphism in the connected anabelioid \mathcal{G}_e $(b_1, b_2 \text{ are the two distinct branches of } e \text{ that abut to } v_1, v_2, \text{ respectively})$

Proposition 1.1

In the above situation:

- \exists a natural continuous isomorphism $\pi_1(\mathcal{B}(\mathcal{G}_{X^{\log}}^{\Sigma}))^{\Sigma} \stackrel{\sim}{\to} \pi_1^{\mathrm{adm}}(X,D)^{\Sigma}$
- \exists a natural $\pi_1(X^{\log})$ -conjugacy class of continuous isomorphisms $\pi_1(\mathcal{B}(\mathcal{G}_{X^{\log}}^{\Sigma}))^{\Sigma} \xrightarrow{\sim} \operatorname{Ker}(\pi_1(X^{\log})^{\Sigma} \twoheadrightarrow \pi_1(S^{\log})^{\Sigma}) \cong \operatorname{Ker}(\pi_1(X^{\log}) \twoheadrightarrow \pi_1(S^{\log}))^{\Sigma}$

Definition -

 \mathcal{G} : a semi-graph of anabelioids

 \mathcal{G} : of (pro- Σ) PSC-type $\stackrel{\text{def}}{\Leftrightarrow} \exists (k, X^{\log})$ as above s.t. $\mathcal{G} \cong \mathcal{G}_{X^{\log}}^{\Sigma}$

Remark

graph of groups (cf., e.g., "Trees" by Serre)

semi-graph of anabelioids ass'd to $X^{\log} \stackrel{??}{\Leftrightarrow}$ semi-graph of profinite groups ass'd to X^{\log}

In order to define and study the notion of the semi-graph of <u>prof. gps</u> ass'd to X^{\log} , one has to fix <u>basepoints</u> of all the components of X^{\log} simultaneously.

On the other hand, there is no natural/consistent choice of such $\underline{\text{basepoints}}$ in general.

 \Rightarrow The notion of a semi-graph of <u>profinite groups</u> is <u>quite unnatural/unsuitable</u> from the point of view of combinatorial anabelian geometry.

In the remainder of the present §1:

 \mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type

 $\widetilde{\mathcal{G}} = \{\mathcal{G}^i \to \mathcal{G}\}_{i \in I}$: a universal pro- Σ covering, i.e., a some cofinal, i.e., in $\mathcal{B}(\mathcal{G})$, collection of connected fét Σ -Galois coverings

Definition -

$$\Pi_{\mathcal{G}} \stackrel{\mathrm{def}}{=} \varprojlim_{\widetilde{\mathcal{G}} \to \mathcal{H}^{\mathrm{fin.}} \xrightarrow{\mathrm{Gal.}_{\mathcal{G}}}} \mathrm{Aut}(\mathcal{H}/\mathcal{G}) \text{: the } \underline{\mathrm{PSC-fundamental\ group}} \text{ of } \mathcal{G} \text{ (w.r.t. } \widetilde{\mathcal{G}})$$

- Proposition 1.2 [CbGC, Remark 1.1.3] -

 $\Pi_{\mathcal{G}}$: a nonabelian pro- Σ surface group (follows from Prp 1.1)

- Definition -

a (Galois) $\Pi_{\mathcal{G}}$ -covering $\stackrel{\text{def}}{\Leftrightarrow}$ a finite intermediate (Galois) covering of $\widetilde{\mathcal{G}} \to \mathcal{G}$

Remark ·

 $\forall \Pi_{\mathcal{G}}$ -covering has a natural structure of semi-graph of anabelioids of pro- Σ PSC-type.

Definition

 $Vert(\mathcal{G})$: the set of vertices of (the underlying semi-graph of) \mathcal{G}

 $Cusp(\mathcal{G})$: the set of open edges of (the underlying semi-graph of) \mathcal{G}

 $Node(\mathcal{G})$: the set of closed edges of (the underlying semi-graph of) \mathcal{G}

 $\operatorname{Edge}(\mathcal{G}) \stackrel{\operatorname{def}}{=} \operatorname{Cusp}(\mathcal{G}) \cup \operatorname{Node}(\mathcal{G})$

 $\mathrm{VCN}(\mathcal{G}) \stackrel{\mathrm{def}}{=} \mathrm{Vert}(\mathcal{G}) \cup \mathrm{Cusp}(\mathcal{G}) \cup \mathrm{Node}(\mathcal{G})$

 $\square \in \{\mathrm{Vert}, \mathrm{Cusp}, \mathrm{Node}, \mathrm{Edge}, \mathrm{VCN}\} \Rightarrow \square(\widetilde{\mathcal{G}}) \stackrel{\mathrm{def}}{=} \varprojlim_{\widetilde{\mathcal{G}} \rightarrow \mathcal{H}^{\mathrm{fin}} \overset{\mathrm{Gal.}}{\leftarrow} \mathcal{G}} \square(\mathcal{H})$

Definition

 $\widetilde{z} \in VCN(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\widetilde{z}} \subset \Pi_{\mathcal{G}}$: the stablizer of \widetilde{z} w.r.t. $\Pi_{\mathcal{G}} \curvearrowright \square(\widetilde{\mathcal{G}})$, VCN-subgroup associated to \tilde{z}

a <u>verticial</u> (resp. a cuspidal; a <u>nodal</u>; an edge-like) subgroup $\stackrel{\text{def}}{\Leftrightarrow}$ a VCN-subgroup associated to $\in \text{Vert}(\widetilde{\mathcal{G}})$ (resp. $\text{Cusp}(\widetilde{\mathcal{G}})$; $\text{Node}(\widetilde{\mathcal{G}})$; $\text{Edge}(\widetilde{\mathcal{G}})$)

Observe: $z \in VCN(\mathcal{G})$ determines a $\Pi_{\mathcal{G}}$ -conjugacy class of VCN-subgroup, i.e., by considering the $\Pi_{\mathcal{G}}$ -conjugacy class of $\Pi_{\widetilde{z}}$ for some $VCN(\mathcal{G}) \ni \widetilde{z} \mapsto z$. \Rightarrow the notion of "a VCN-subgp ass'd to \in VCN(\mathcal{G}), well-defined up to conjugation"

Definition

 $\square \in \{\text{Vert}, \text{Cusp}, \text{Node}, \text{Edge}\}$

 $\Pi_{\mathcal{G}}^{ab-\square} \subseteq \Pi_{\mathcal{G}}^{ab}$: the subgp top'y gen'd by the images of the VCN-subgps ass'd to $\in \square(\widetilde{\mathcal{G}})$ $\Pi_{\mathcal{G}}^{ab/\square} \stackrel{\text{def}}{=} \Pi_{\mathcal{G}}^{ab} / \Pi_{\mathcal{G}}^{ab-\square}$

 $\bullet \ 0 \to \Pi_{\mathcal{G}}^{ab-\square} \to \Pi_{\mathcal{G}}^{ab} \to \Pi_{\mathcal{G}}^{ab/\square} \to 0$ $\bullet \ \Pi_{\mathcal{G}}^{ab-\text{Cusp}}, \ \Pi_{\mathcal{G}}^{ab-\text{Node}} \subseteq \Pi_{\mathcal{G}}^{ab-\text{Edge}} = \Pi_{\mathcal{G}}^{ab-\text{Cusp}} + \Pi_{\mathcal{G}}^{ab-\text{Node}} \subseteq \Pi_{\mathcal{G}}^{ab-\text{Vert}} \subseteq \Pi_{\mathcal{G}}^{ab}$ $\bullet \ \Pi_{\mathcal{G}}^{ab} \twoheadrightarrow \Pi_{\mathcal{G}}^{ab/\text{Cusp}}, \ \Pi_{\mathcal{G}}^{ab/\text{Node}} \twoheadrightarrow \Pi_{\mathcal{G}}^{ab/\text{Edge}} \twoheadrightarrow \Pi_{\mathcal{G}}^{ab/\text{Vert}}$

```
Definition

\mathcal{G}': a semi-graph of anabelioids of pro-\Sigma PSC-type

\alpha \colon \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{G}'}: a continuous (outer) isomorphism

• \alpha: graphic \stackrel{\text{def}}{\Leftrightarrow}

\exists \mathcal{G} \xrightarrow{\sim} \mathcal{G}' that induces the (outer isomorphism det'd by the) isomorphism \alpha

• \square \in \{\text{verticial}, \text{cuspidal}, \text{nodal}, \text{edge-like}\}

\alpha: group-theoretically \square \stackrel{\text{def}}{\Leftrightarrow}

\alpha(\square \text{ subgp of } \Pi_{\mathcal{G}}) \text{ is } \square \text{ in } \Pi_{\mathcal{G}'}, \alpha^{-1}(\square \text{ subgp of } \Pi_{\mathcal{G}'}) \text{ is } \square \text{ in } \Pi_{\mathcal{G}}

Proposition 1.3 [CbGC, Proposition 1.5, (ii)]
```

```
\alpha\colon \Pi_{\mathcal{G}}\stackrel{\sim}{\to} \Pi_{\mathcal{G}'}\colon a continuous outer isomorphism \alpha\colon graphic \Leftrightarrow \alpha\colon gp-theoretically verticial, gp-theoretically cuspidal, gp-theoretically nodal \Leftrightarrow \alpha\colon gp-theoretically verticial, gp-theoretically edge-like In this situation, an isomorphism \mathcal{G}\stackrel{\sim}{\to} \mathcal{G}' that induces \alpha is unique. (follows essentially from Prp 2.2, 2.3, 2.4, 2.5 below)
```

By Prp 1.3, the natural homomorphism $\operatorname{Aut}(\mathcal{G}) \to \operatorname{Out}(\Pi_{\mathcal{G}})$ is <u>injective</u>. Let us regard $\operatorname{Aut}(\mathcal{G})$ as a subgroup of $\operatorname{Out}(\Pi_{\mathcal{G}})$.

```
Observe: \Pi_{\mathcal{G}}: topologically finitely generated (cf. Prp 1.2)

\Rightarrow \bigcap_{N\subseteq\Pi_{\mathcal{G}}: \text{ open, characteristic}} N = \{1\}

\Rightarrow \text{Out}(\Pi_{\mathcal{G}}) \text{ has a natural structure of } \underline{\text{profinite group,}}

i.e., \text{Out}(\Pi_{\mathcal{G}}) = \varprojlim_{N\subseteq\Pi_{\mathcal{G}}: \text{ open, characteristic}} \underline{\text{Out}(\Pi_{\mathcal{G}}/N)},

w.r.t. which \text{Aut}(\mathcal{G}) \subseteq \text{Out}(\Pi_{\mathcal{G}}) is a closed subgroup.
```

§2: Foundations of VCN-subgroups

 Σ : a nonempty set of prime numbers

 \mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type

 $\widetilde{\mathcal{G}} \to \mathcal{G}$: a universal pro- Σ covering

Proposition 2.1 [CbGC, Remark 1.1.3]

$$(1) \ \widetilde{e} \in \mathrm{Edge}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\widetilde{e}} \ (\widetilde{\leftarrow} \ "\pi_1(X_e)^{\Sigma"}) \cong \widehat{\mathbb{Z}}^{\Sigma}$$

(1)
$$\widetilde{e} \in \text{Edge}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\widetilde{e}} \ (\widetilde{\leftarrow} \ "\pi_1(X_e)^{\Sigma"}) \cong \widehat{\mathbb{Z}}^{\Sigma}$$

(2) $\widetilde{v} \in \text{Vert}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\widetilde{v}} \ (\widetilde{\leftarrow} \ "\pi_1(X_v)^{\Sigma"})$: a nonabelian pro- Σ surface group

- Proposition 2.2 [CbGC, Proposition 1.2, (ii)]

$$\begin{split} \widetilde{z} \in \mathrm{VCN}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\widetilde{z}} \colon \text{commensurably terminal in } \Pi_{\mathcal{G}}, \\ \text{i.e., } \Pi_{\widetilde{z}} = C_{\Pi_{\mathcal{G}}}(\Pi_{\widetilde{z}}) \stackrel{\text{def}}{=} \big\{ \, \gamma \in \Pi_{\mathcal{G}} \, | \, [\Pi_{\widetilde{z}} : \Pi_{\widetilde{z}} \cap \gamma \Pi_{\widetilde{z}} \gamma^{-1} \cap \gamma^{-1} \Pi_{\widetilde{z}} \gamma] < \infty \, \big\} \end{split}$$

More strongly:

- Proposition 2.3 [NodNon, Lemma 1.5] -

$$\widetilde{e}_1, \ \widetilde{e}_2 \in \operatorname{Edge}(\widetilde{\mathcal{G}})$$
 $\widetilde{e}_1 = \widetilde{e}_2 \Leftrightarrow \Pi_{\widetilde{e}_1} = \Pi_{\widetilde{e}_2} \Leftrightarrow \Pi_{\widetilde{e}_1} \cap \Pi_{\widetilde{e}_2} \neq \{1\}$

- Proposition 2.4 [NodNon, Lemma 1.7]

$$\widetilde{e} \in \operatorname{Edge}(\widetilde{\mathcal{G}}), \ \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$$

 \widetilde{e} abuts to $\widetilde{v} \Leftrightarrow \Pi_{\widetilde{e}} \subseteq \Pi_{\widetilde{v}} \Leftrightarrow \Pi_{\widetilde{e}} \cap \Pi_{\widetilde{v}} \neq \{1\}$

- Proposition 2.5 [NodNon, Lemma 1.9]

$$\widetilde{v}_1, \, \widetilde{v}_2 \in \operatorname{Vert}(\widetilde{\mathcal{G}})$$

- (1) $\widetilde{v}_1 = \widetilde{v}_2 \Leftrightarrow \Pi_{\widetilde{v}_1} = \Pi_{\widetilde{v}_2}$
- (2) $\widetilde{v}_1 \neq \widetilde{v}_2$ but $\exists \widetilde{e} \in \text{Node}(\widetilde{\mathcal{G}})$ s.t. \widetilde{e} abuts both to \widetilde{v}_1 and to \widetilde{v}_2 $\Leftrightarrow \Pi_{\widetilde{v}_1} \neq \Pi_{\widetilde{v}_2}, \, \Pi_{\widetilde{v}_1} \cap \Pi_{\widetilde{v}_2} \neq \{1\}$ In this situation, $\Pi_{\tilde{v}_1} \cap \Pi_{\tilde{v}_2} = \Pi_{\tilde{e}}$.

Proposition 2.6 [CbTpII, Propositions 1.4, 1.5] -

 $H \subseteq \Pi_{\mathcal{G}}$: a closed subgroup, $\square \in \{\text{Vert}, \text{Cusp}, \text{Node}\}$

- (a) $\exists \widetilde{z} \in \Box(\widetilde{\mathcal{G}}) \text{ s.t. } H \subseteq \Pi_{\widetilde{z}} \iff \text{(b) for } \forall \gamma \in H, \ \exists \widetilde{z}_{\gamma} \in \Box(\widetilde{\mathcal{G}}) \text{ s.t. } \gamma \in \Pi_{\widetilde{z}_{\gamma}}$
- \Leftrightarrow (c) for $\forall \Pi_{\mathcal{G}}$ -covering $\mathcal{H} \to \mathcal{G}$, $\operatorname{Im}(H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\operatorname{ab}/\square}) = \{0\}$

Proof

- (a) \Rightarrow (c): immediate
- (b) \Rightarrow (a): omit
- (c) \Rightarrow (b) in the case where $\Sigma = \{l\}$:

First, we may assume: $H \cong \mathbb{Z}_l$ (by replacing H by " $\overline{\langle \gamma \rangle}$ ").

- Claim

 $\mathcal{H} \to \mathcal{G}$: a Galois $\Pi_{\mathcal{G}}$ -covering

 $\underline{\mathcal{H}}$: the $\Pi_{\mathcal{G}}$ -covering corresponding to the open subgroup $\Pi_{\mathcal{H}} \cdot H \subseteq \Pi_{\mathcal{G}}$

 $\Rightarrow \exists z \in \Box(\underline{\mathcal{H}}) \text{ s.t. } \underline{\mathcal{H}} \to \underline{\mathcal{H}} \text{ is totally ramified at } z$

Proof of Claim

 $H \hookrightarrow \Pi_{\mathcal{H}} \cdot H = \Pi_{\underline{\mathcal{H}}} \twoheadrightarrow (\Pi_{\mathcal{H}} \cdot H)/\Pi_{\mathcal{H}} = \Pi_{\underline{\mathcal{H}}}/\Pi_{\mathcal{H}} = \operatorname{Aut}(\mathcal{H}/\underline{\mathcal{H}})$: surjective Thus, since $H \cong \mathbb{Z}_l$,

$$\operatorname{Aut}(\mathcal{H}/\underline{\mathcal{H}}) \cong \mathbb{Z}/l^n\mathbb{Z} \text{ for some } n \geq 0 \quad (*_1)$$

Thus, since $\operatorname{Im}(H \hookrightarrow \Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\operatorname{ab}}) \subseteq \Pi_{\mathcal{H}}^{\operatorname{ab-}\square}$ by (c),

$$\left(\bigoplus_{z\in\square(\underline{\mathcal{H}})}\operatorname{Im}(\Pi_z\text{ in }\Pi^{\operatorname{ab}}_{\underline{\mathcal{H}}})\twoheadrightarrow\right)\quad\Pi^{\operatorname{ab}-\square}_{\underline{\mathcal{H}}}\hookrightarrow\Pi^{\operatorname{ab}}_{\underline{\mathcal{H}}}\stackrel{(*_1)}{\twoheadrightarrow}\operatorname{Aut}(\mathcal{H}/\underline{\mathcal{H}})\text{ is surjective}\quad(*_2)$$

 $(*_1), (*_2) \Rightarrow \exists z \in \Box(\underline{\mathcal{H}}) \text{ s.t. } \Pi_z \hookrightarrow \Pi_{\underline{\mathcal{H}}} \twoheadrightarrow \operatorname{Aut}(\mathcal{H}/\underline{\mathcal{H}}): \text{ surjective}$

By Claim, $\square(\mathcal{H})^H \neq \emptyset$ for \forall Galois $\Pi_{\mathcal{G}}$ -covering $\mathcal{H} \rightarrow \mathcal{G}$ Thus, since $\square(\mathcal{H})^H$ is finite, $\varprojlim_{\widetilde{\mathcal{G}} \rightarrow \mathcal{H}^{\text{fin. Gal.}}_{\mathfrak{G}}} \square(\mathcal{H})^H \neq \emptyset$.

Then it is immediate: $H \subseteq \Pi_{\widetilde{z}}$ for $\forall \widetilde{z} \in \text{this nonempty limit}$

Corollary 2.7

 $\square \in \{\circ, \bullet\}$

 $\triangle \in \{\text{Vert}, \text{Cusp}, \text{Node}\}$

 \mathcal{G}_{\square} : a semi-graph of anabelioids of pro- Σ PSC-type

 $\alpha \colon \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}} \colon$ a continuous isomorphism s.t.

for $\forall \Pi_{\mathcal{G}_{\circ}}$ -covering $\mathcal{H}_{\circ} \to \mathcal{G}_{\circ}$,

if one writes $\mathcal{H}_{\bullet} \to \mathcal{G}_{\bullet}$ for the corresponding $\Pi_{\mathcal{G}_{\bullet}}$ -covering, then

$$\Pi_{\mathcal{G}_{\circ}} \longleftarrow \Pi_{\mathcal{H}_{\circ}} \longrightarrow \Pi_{\mathcal{H}_{\circ}}^{ab} \longrightarrow \Pi_{\mathcal{H}_{\circ}}^{ab/\triangle}$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\iota} \qquad \qquad$$

 $\Rightarrow \alpha$: gp-theretically verticial (resp. cuspidal; nodal) if \triangle = Vert (resp. Cusp; Node) (follows from Prp 2.6)

$$\Pi_{\mathcal{G}} + \{\text{verticial subgps}\} \stackrel{\text{Prp 2.5}}{\Longleftrightarrow} \Pi_{\mathcal{G}} + \{\text{verticial subgps}\} + \{\text{nodal subgps}\}$$

$$\uparrow^{\text{Prp 2.6}} \qquad \qquad \qquad \uparrow^{\text{Prp 2.6}}$$

$$\Pi_{\mathcal{G}} + \{\Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\text{ab/Vert}}\}_{\mathcal{H}} \qquad \qquad \Pi_{\mathcal{G}} + \{\Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\text{ab/Node}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\text{ab/Vert}}\}_{\mathcal{H}}$$

Proposition 2.8 [CbGC, Theorem 1.6, (i)], also [IUTchI, Remark 1.2.2]

$$\Pi_{\mathcal{G}} + \Big(\{ \text{open subgps of } \Pi_{\mathcal{G}} \} \ni H \mapsto \# \text{Cusp}(\text{the } \Pi_{\mathcal{G}}\text{-covering corr'g to } H) \Big)$$

 $\Rightarrow \Pi_{\mathcal{G}} + \{ \text{cuspidal subgps} \}$

§3: Cyclotomes Associated to Semi-graphs of Anabelioids of PSC-type

 Σ : a nonempty set of prime numbers

 \mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type

 $\widetilde{\mathcal{G}} \to \mathcal{G}$: a universal pro- Σ covering

 $\begin{array}{l} \mathcal{G}\colon \underline{\operatorname{strudy}} \stackrel{\operatorname{def}}{\Leftrightarrow} \forall \operatorname{vertex} \ \operatorname{of} \ \mathcal{G} \ \operatorname{is} \ \text{``of genus} \geq 2\text{''} \\ (\operatorname{i.e.,} \ \forall \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}}), \ \operatorname{the fin. free} \ \widehat{\mathbb{Z}}^{\Sigma}\text{-module } \operatorname{Im}(\Pi_{\widetilde{v}} \hookrightarrow \Pi_{\mathcal{G}} \twoheadrightarrow \Pi_{\mathcal{G}}^{\operatorname{ab}/\operatorname{Cusp}}) \ \operatorname{is of rank} \geq 4) \end{array}$

In the remainder of the present §3, for simplicity (cf. Rmk * below), suppose: \mathcal{G} is sturdy \mathcal{G}^+ : the semi-graph of anabelioids obtained by removing the open edges form \mathcal{G} $\overset{\mathcal{G}: \text{ sturdy}}{\Rightarrow} \mathcal{G}^+: \text{ of pro-}\Sigma \text{ PSC-type}$

Moreover, we have a surjective continuous homomorphism $\Pi_{\mathcal{G}} \to \Pi_{\mathcal{G}^+}$ whose kernel is topologically normally generated by the cuspidal subgroups, which thus induces an isomorphism $\Pi_{\mathcal{C}}^{\mathrm{ab/Cusp}} \stackrel{\sim}{\to} \Pi_{\mathcal{C}^+}^{\mathrm{ab}}$.

Definition -

 $\Lambda_{\mathcal{G}} \stackrel{\text{def}}{=} \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(H^2(\Pi_{\mathcal{G}^+}, \widehat{\mathbb{Z}}^{\Sigma}), \widehat{\mathbb{Z}}^{\Sigma})$: the cyclotome associated to \mathcal{G}

Proposition 3.1

 $\Lambda_{\mathcal{G}} \cong \widehat{\mathbb{Z}}^{\Sigma}$ (follows from Prp 1.1)

• Definition

 $\chi_{\mathcal{G}} \colon \operatorname{Aut}(\mathcal{G}) \to \operatorname{Aut}(\Lambda_{\mathcal{G}}) \stackrel{\operatorname{Prp}}{=} {}^{3.1} (\widehat{\mathbb{Z}}^{\Sigma})^{\times} \colon \operatorname{the} (\operatorname{pro-}\Sigma) \operatorname{cyclotomic character} \operatorname{ass'd} \operatorname{to} \mathcal{G}$

- Proposition 3.2 [CbGC, Proposition 1.3] -

A natural identification $\Pi^{ab}_{\mathcal{G}^+} = \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(H^1(\Pi_{\mathcal{G}^+}, \widehat{\mathbb{Z}}^{\Sigma}), \widehat{\mathbb{Z}}^{\Sigma})$ (cf. Prp 1.1) and the pairing $H^1(\Pi_{\mathcal{G}^+},\widehat{\mathbb{Z}}^{\Sigma}) \times H^1(\Pi_{\mathcal{G}^+},\widehat{\mathbb{Z}}^{\Sigma}) \to H^2(\Pi_{\mathcal{G}^+},\widehat{\mathbb{Z}}^{\Sigma})$ determines a commutative diagram

$$\begin{split} \Pi_{\mathcal{G}^{+}}^{ab} &\longleftarrow \Pi_{\mathcal{G}^{+}}^{ab\text{-Vert}} &\longleftarrow \Pi_{\mathcal{G}^{+}}^{ab\text{-Node}} \\ \downarrow^{\wr} & \downarrow^{\wr} & \downarrow^{\wr} \\ \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\mathcal{G}^{+}}^{ab}, \Lambda_{\mathcal{G}}) &\longleftarrow \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\mathcal{G}^{+}}^{ab/\operatorname{Node}}, \Lambda_{\mathcal{G}}) &\longleftarrow \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\mathcal{G}^{+}}^{ab/\operatorname{Vert}}, \Lambda_{\mathcal{G}}), \\ \Pi_{\mathcal{G}^{+}}^{ab} &\longrightarrow \Pi_{\mathcal{G}^{+}}^{ab/\operatorname{Node}} &\longrightarrow \Pi_{\mathcal{G}^{+}}^{ab/\operatorname{Vert}} \\ \downarrow^{\wr} & \downarrow^{\wr} & \downarrow^{\wr} \\ \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\mathcal{G}^{+}}^{ab}, \Lambda_{\mathcal{G}}) &\longrightarrow \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\mathcal{G}^{+}}^{ab/\operatorname{Vert}}, \Lambda_{\mathcal{G}}) &\longrightarrow \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\mathcal{G}^{+}}^{ab/\operatorname{Node}}, \Lambda_{\mathcal{G}}). \end{split}$$

(follows from Prp 1.1)

Synchronization of Cyclotomes for Cusps -

$$\widetilde{e} \in \mathrm{Cusp}(\widetilde{\mathcal{G}})$$

 $Q_{\widetilde{e}}$: the quotient of $\Pi_{\mathcal{G}}$ by the normal closed subgp topologically normally gen'd by the commutator $[\Pi_{\mathcal{G}}, \Pi_{\widetilde{e}}]$ and the Π_f 's w/ $f \in \text{Cusp}(\mathcal{G})$ over which \widetilde{e} does not lie $J_{\widetilde{e}} \subseteq Q_{\widetilde{e}}$: the image of $\Pi_{\widetilde{e}}$

 $\stackrel{\text{Prp 1.1}}{\Rightarrow}$ • The natural surjective cont. hom. $(\widehat{\mathbb{Z}}^{\Sigma} \cong) \Pi_{\widetilde{e}} \twoheadrightarrow J_{\widetilde{e}}$ is an isomorphism.

•
$$1 \to J_{\widetilde{e}} \to Q_{\widetilde{e}} \to \Pi_{\mathcal{G}^+} \to 1$$

Moreover, by Prp 1.1, the image of $\mathrm{id}_{J_{\widetilde{e}}} \in \mathrm{End}_{\widetilde{\chi}_{\Sigma}}(J_{\widetilde{e}})$ by the fourth arrow of

$$0 \longrightarrow H^{1}(\Pi_{\mathcal{G}^{+}}, J_{\widetilde{e}}) \longrightarrow H^{1}(Q_{\widetilde{e}}, J_{\widetilde{e}}) \longrightarrow H^{1}(J_{\widetilde{e}}, J_{\widetilde{e}})^{Q_{\widetilde{e}}} \longrightarrow H^{2}(\Pi_{\mathcal{G}^{+}}, J_{\widetilde{e}})$$

$$[\Pi_{\mathcal{G}}, \Pi_{\widetilde{e}}] \Big\| \subseteq \operatorname{Ker}(\Pi_{\mathcal{G}^{\to}} Q_{\widetilde{e}}) \qquad \qquad \Big\|$$

$$\operatorname{End}_{\widehat{\mathbb{Z}}^{\Sigma}}(J_{\widetilde{e}}) \qquad \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Lambda_{\mathcal{G}}, J_{\widetilde{e}})$$

is an isomorphism $\Lambda_{\mathcal{G}} \stackrel{\sim}{\to} J_{\widetilde{e}}$.

$$\mathfrak{syn}_{\widetilde{e}} \colon \Pi_{\widetilde{e}} \overset{\sim}{\to} \Lambda_{\mathcal{G}} \colon$$

the composite of the natural isom. $\Pi_{\tilde{e}} \stackrel{\sim}{\to} J_{\tilde{e}}$ and the converse of the resulting isom.

- Corollary 3.3

$$\widetilde{e} \in \mathrm{Cusp}(\widetilde{\mathcal{G}})$$

 $\alpha \in \operatorname{Aut}(\mathcal{G}) \subseteq \operatorname{Out}(\Pi_{\mathcal{G}})$

 $\widetilde{\alpha} \in \operatorname{Aut}(\Pi_{\mathcal{G}})$: a lifting of α

Suppose: $\widetilde{\alpha}(\Pi_{\widetilde{e}}) = \Pi_{\widetilde{e}}$

$$\Rightarrow \widetilde{\alpha}|_{\Pi_{\widetilde{e}}} \in \operatorname{Aut}(\Pi_{\widetilde{e}}) \stackrel{\operatorname{Prp}}{=} {}^{2.1, (1)} (\widehat{\mathbb{Z}}^{\Sigma})^{\times} \text{ is } = \chi_{\mathcal{G}}(\alpha)$$

(follows from Synchronization of Cyclotomes for Cusps)

Lemma 3.4

I: a profinite group $\rho: I \to \operatorname{Aut}(\mathcal{G}) \subseteq \operatorname{Out}(\Pi_{\mathcal{G}})$: a continuous homomorphism Suppose: $\exists l \in \Sigma \text{ s.t. } \operatorname{Im}(I \xrightarrow{\rho} \operatorname{Aut}(\mathcal{G}) \xrightarrow{\chi_{\mathcal{G}}} (\widehat{\mathbb{Z}}^{\Sigma})^{\times} \to \mathbb{Z}_{l}^{\times}) \subseteq \mathbb{Z}_{l}^{\times}$: open $\Pi_{\mathcal{G}} + (\rho: I \to \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}(\Pi_{\mathcal{G}})) \Rightarrow \#\operatorname{Cusp}(\mathcal{G})$

$\underline{\operatorname{Proof}} \text{ of "}\Pi_{\mathcal{G}} + (\chi \colon I \xrightarrow{\rho} \operatorname{Aut}(\mathcal{G}) \xrightarrow{\chi_{\mathcal{G}}} (\widehat{\mathbb{Z}}^{\Sigma})^{\times} \to \mathbb{Z}_{l}^{\times}) \Rightarrow \#\operatorname{Cusp}(\mathcal{G})"$

 $\Pi_{\mathcal{G}}$: free pro- $\Sigma \Leftrightarrow \# \mathrm{Cusp}(\mathcal{G}) > 0$ First, by Prp 1.1:

 \Rightarrow We may assume: $\#\text{Cusp}(\mathcal{G}) > 0$

V: a finite dimensional \mathbb{Q}_l -vector space equipped w/ a continuous action of I

- \Rightarrow $\tau(I,V)$: the sum of the dimensions of the subquot.s V_i/V_{i+1} w/ triv. act. of I w.r.t. a " $\mathbb{Q}_l[I]$ -composition series" $\{0\} = V_n \subseteq \ldots \subseteq V_0 = V$
 - $\tau(V) = \max_{J \subseteq I: \text{open subgp}} \tau(J, V)$
- $\square \in \{\mathcal{G}, \mathcal{G}^{+}\} \Rightarrow V_{\square} \stackrel{\text{def}}{=} \Pi_{\square}^{\text{ab}} \otimes_{\widehat{\mathbb{Z}}^{\Sigma}} \mathbb{Q}_{l}(\chi^{-1}), W_{\square} \stackrel{\text{def}}{=} \text{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}(\Pi_{\square}^{\text{ab}}, \mathbb{Q}_{l})$ $\Rightarrow \bullet \#\text{Cusp}(\mathcal{G}) 1 \stackrel{\text{Prp 1.1}}{=} \dim_{\mathbb{Q}_{l}}(V_{\mathcal{G}}) \dim_{\mathbb{Q}_{l}}(V_{\mathcal{G}^{+}}) \stackrel{\text{Cor 3.3}}{=} \tau(V_{\mathcal{G}}) \tau(V_{\mathcal{G}^{+}})$

 - $\bullet \tau(V_{\mathcal{G}^+}) \stackrel{\text{Prp 3.2}}{=} \tau(W_{\mathcal{G}^+})$ $\bullet \tau(W_{\mathcal{G}}) \stackrel{\text{Prp 1.1, 3.2}}{=} \tau(W_{\mathcal{G}^+})$
- $\Rightarrow \# \operatorname{Cusp}(\mathcal{G}) = 1 + \tau(V_{\mathcal{G}}) \tau(W_{\mathcal{G}})$

Corollary 3.5 [AbTpI, Lemma 4.5] -

I: a profinite group $\rho: I \to \operatorname{Aut}(\mathcal{G}) \subseteq \operatorname{Out}(\Pi_{\mathcal{G}})$: a continuous homomorphism Suppose: $\exists l \in \Sigma \text{ s.t. } \operatorname{Im}(I \xrightarrow{\rho} \operatorname{Aut}(\mathcal{G}) \xrightarrow{\chi_{\mathcal{G}}} (\widehat{\mathbb{Z}}^{\Sigma})^{\times} \to \mathbb{Z}_{l}^{\times}) \subseteq \mathbb{Z}_{l}^{\times}$: open $\Pi_{\mathcal{G}} + (\rho: I \to \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}(\Pi_{\mathcal{G}})) \Rightarrow \Pi_{\mathcal{G}} + \{\text{cuspidal subgps}\}$ (follows essentially from Prp 2.8, Cor 3.3, and Lmm 3.4)

Corollary 3.6 -

 $\square \in \{\circ, \bullet\}$

 $\mathcal{G}_{\square} \text{: a semi-graph of an$ $abelioids of pro-}\Sigma \text{ PSC-type}$

 I_{\square} : a profinite group

 $\rho_{\square} \colon I_{\square} \to \operatorname{Aut}(\mathcal{G}_{\square}) \ (\subseteq \operatorname{Out}(\Pi_{\mathcal{G}_{\square}})) \colon \text{a continuous homomorphism}$

Suppose: $\exists l_{\square} \in \Sigma_{\square} \text{ s.t. } \operatorname{Im}(I_{\square} \xrightarrow{\rho} \operatorname{Aut}(\mathcal{G}_{\square}) \xrightarrow{\chi_{\mathcal{G}_{\square}}} (\widehat{\mathbb{Z}}^{\Sigma})^{\times} \to \mathbb{Z}_{l_{\square}}^{\times}) \subseteq \mathbb{Z}_{l_{\square}}^{\times} : \underline{\operatorname{open}}$

 $\alpha\colon \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}}$: a continuous isomorphism w/ a commutative diagram

$$\begin{array}{ccc} I_{\circ} & \xrightarrow{\rho_{\circ}} & \mathrm{Out}\big(\Pi_{\mathcal{G}_{\circ}}\big) \\ \exists & & & \bigvee_{\mathrm{Out}(\alpha)} \\ I_{\bullet} & \xrightarrow{\rho_{\bullet}} & \mathrm{Out}\big(\Pi_{\mathcal{G}_{\bullet}}\big) \end{array}$$

 $\Rightarrow \alpha$: group-theretically cuspidal (follows essentially from Cor 3.5)

Remark *

One may define/establish

- the cyclotome,
- the cyclotomic character, and
- synchronization of cyclotomes for cusps

for a general (i.e., not necessarily sturdy) semi-graph of anabelioids of PSC-type (cf. [CbGC, §2], [CbTpI, §3]).

§4: A Combinatorial Anabelian Result for Stable Log Curves over Log Points

 Σ : a nonempty set of prime numbers

 \mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type

 $\mathcal{G} \to \mathcal{G}$: a universal pro- Σ covering

I: a profinite group

 $\rho \colon I \to \operatorname{Aut}(\mathcal{G}) \subseteq \operatorname{Out}(\Pi_{\mathcal{G}})$: a continuous homomorphism

$$1 \longrightarrow \Pi_{\mathcal{G}} \longrightarrow \Pi_{I} \longrightarrow I \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{\rho}$$

$$1 \stackrel{\text{Prp 1.2}}{\longrightarrow} \Pi_{\mathcal{G}} \longrightarrow \text{Aut}(\Pi_{\mathcal{G}}) \longrightarrow \text{Out}(\Pi_{\mathcal{G}}) \longrightarrow 1$$

Definition

 $\widetilde{v} \in \operatorname{Vert}(\mathcal{G}) \Rightarrow I_{\widetilde{v}} \stackrel{\operatorname{def}}{=} Z_{\Pi_I}(\Pi_{\widetilde{z}}) \subseteq D_{\widetilde{v}} \stackrel{\operatorname{def}}{=} N_{\Pi_I}(\Pi_{\widetilde{z}}) \subseteq \Pi_I$: the inertia/decomposition subgroups of Π_I associated to $\widetilde{v} \in \text{Vert}(\mathcal{G})$

- Lemma 4.1

$$\widetilde{z} \in VCN(\mathcal{G}) \Rightarrow D_{\widetilde{z}} \cap \Pi_{\mathcal{G}} = \Pi_{\widetilde{z}}$$
 (follows from Prp 2.2)

- Definition -

(1) ρ : of IPSC-type $\stackrel{\text{def}}{\Leftrightarrow}$

- $\exists k$: an algebraically closed field of characteristic $\notin \Sigma$
- $\exists X^{\log}$: a stable log curve/the standard log point $\operatorname{Spec}(k)^{\log} \stackrel{\text{def}}{=} "(\operatorname{Spec}(k), \mathbb{N})"$
- $\exists \alpha \colon \mathcal{G}_{X^{\log}}^{\Sigma} \xrightarrow{\sim} \mathcal{G} \text{ s.t.}$

$$\exists 1 \longrightarrow \Pi_{\mathcal{G}_{X^{\log}}^{\Sigma}} \longrightarrow \pi_{1}(X^{\log})^{\Sigma} \longrightarrow \pi_{1}(\operatorname{Spec}(k)^{\log})^{\Sigma} \longrightarrow 1$$

$$\downarrow 1 \qquad \qquad \downarrow 1 \qquad \qquad \downarrow 1 \qquad \qquad \downarrow 1$$

$$1 \longrightarrow \Pi_{\mathcal{G}} \longrightarrow \Pi_{I} \longrightarrow 1$$

(2) ρ : of PIPSC-type $\stackrel{\text{def}}{\Leftrightarrow} I \cong \widehat{\mathbb{Z}}^{\Sigma}$, $\rho|_{\exists \text{an open subgroup of } I}$ is of IPSC-type

One most important property of a cont. homomorphism of PIPSC-type is as follows:

Lemma 4.2 [CbGC, Proposition 2.6] —

Suppose: ρ is of PIPSC-type

 $M \subseteq \Pi_{\mathcal{G}}^{\mathrm{ab}}$: a sub- $\widehat{\mathbb{Z}}^{\Sigma}$ -module $M \subseteq \Pi_{\mathcal{G}}^{\mathrm{ab-Vert}} \Leftrightarrow \exists \mathrm{an\ open\ subgp}\ J \subseteq I\ \mathrm{s.t.}\ J \curvearrowright \Pi_{\mathcal{G}}^{\mathrm{ab}}$ induces the trivial action on M(follows essentially from weight-monodromy conj. for Jacobian varieties of curves)

```
Lemma 4.3 [AbTpII, Proposition 1.3, (iii), (iv)] -
Suppose: \rho is of IPSC-type
    (1) \widetilde{v} \in \text{Vert}(\widetilde{\mathcal{G}}) \Rightarrow I_{\widetilde{v}} \hookrightarrow \Pi_I \twoheadrightarrow I: an isomorphism
    (2) \widetilde{v}, \widetilde{w} \in \text{Vert}(\widetilde{\mathcal{G}})
        \widetilde{v} = \widetilde{w} \Leftrightarrow I_{\widetilde{v}} = I_{\widetilde{w}}
(follows from some considerations on the log structures involved)
```

Lemma 4.4

 $\widetilde{v} \in \mathrm{Vert}(\widetilde{\mathcal{G}})$

Suppose: ρ is of IPSC-type

- $(1) \ D_{\widetilde{v}} = I_{\widetilde{v}} \times \Pi_{\widetilde{v}}$
- $(2) \ N_{\Pi_{I}}(I_{\widetilde{v}}) = D_{\widetilde{v}} \stackrel{\text{(1); Lmm 4.3, (1)}}{\Rightarrow} N_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}}) = \Pi_{\widetilde{v}})$ $(3) \ Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}})) = \{1\}$

Proof

(1):

$$I_v \cdot \Pi_v \subseteq D_v$$
 by definition
$$\stackrel{\text{Lmm 4.1; 4.3, (1)}}{\Rightarrow} I_v \cdot \Pi_v = D_v \quad \text{(cf. } 1 \to \Pi_{\mathcal{G}} \to \Pi_I \to I \to 1)$$
Thus, since $Z(\Pi_v) = \{1\}$ (cf. Prp 2.1, (2)), $I_v \times \Pi_v = D_v$.

(2): $N_{\Pi_I}(I_{\widetilde{v}}) \supseteq D_{\widetilde{v}}$: by (1) $N_{\Pi_I}(I_{\widetilde{v}}) \subseteq D_{\widetilde{v}}$: $\gamma \in N_{\Pi_I}(I_{\widetilde{v}})$

$$\Rightarrow I_{\widetilde{v}} = \gamma I_{\widetilde{v}} \gamma^{-1} = \gamma Z_{\Pi_{I}}(\Pi_{\widetilde{v}}) \gamma^{-1} = Z_{\Pi_{I}}(\gamma \Pi_{\widetilde{v}} \gamma^{-1}) = Z_{\Pi_{I}}(\Pi_{\widetilde{v}}^{\gamma}) = I_{\widetilde{v}}^{\gamma}$$

$$\stackrel{\text{Lmm 4.3, (2)}}{\Rightarrow} \widetilde{v} = \widetilde{v}^{\gamma} \Rightarrow \Pi_{\widetilde{v}} = \Pi_{\widetilde{v}}^{\gamma} = \gamma \Pi_{\widetilde{v}}^{\gamma} \gamma^{-1} \Rightarrow \gamma \in N_{\Pi_{I}}(\Pi_{\widetilde{v}}) = D_{\widetilde{v}}$$

(3):

$$\Pi_{\widetilde{v}} \subseteq Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}}) \subseteq N_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}}) \stackrel{(2)}{=} \Pi_{\widetilde{v}}
\Rightarrow Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}}) = \Pi_{\widetilde{v}}
\Rightarrow Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\mathcal{G}}}(I_{\widetilde{v}})) = Z_{\Pi_{\mathcal{G}}}(\Pi_{\widetilde{v}}) \stackrel{\text{Prp 2.2.2}}{=} Z(\Pi_{\widetilde{v}}) \stackrel{\text{Prp 2.1, (2)}}{=} \{1\}$$

Main Lemma of §4 [CbTpII, Theorem 1.6, (iv)] -

Suppose: ρ is of IPSC-type

s: a splitting of $\Pi_I \twoheadrightarrow I$ s.t. $Z_{\Pi_G}(Z_{\Pi_G}(\operatorname{Im}(s))) = \{1\}$

 $\Rightarrow \exists \widetilde{v} \in \text{Vert}(\widetilde{\mathcal{G}}) \text{ s.t. } \text{Im}(s) = I_{\widetilde{v}} \stackrel{\text{Lmm 4.4, (2)}}{\Rightarrow} N_{\Pi_{\mathcal{G}}}(\text{Im}(s)): \text{ verticial})$

Proof

 $\frac{H \stackrel{\text{def}}{=} Z_{\Pi_{\mathcal{G}}}(\operatorname{Im}(s))}{H \stackrel{\text{Lmm 4.2}}{\Rightarrow} \text{ for } \forall \Pi_{\mathcal{G}}\text{-covering } \mathcal{H} \to \mathcal{G}, \operatorname{Im}(H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \twoheadrightarrow \Pi_{\mathcal{H}}^{\operatorname{ab/Vert}}) = \{0\}$

 $\stackrel{\text{Prp 2.6}}{\Rightarrow} \exists \widetilde{v} \in \text{Vert}(\widetilde{\mathcal{G}}) \text{ s.t. } H \subseteq \Pi_{\widetilde{v}} \Rightarrow$

$$Z_{\Pi_I}(H) \supseteq Z_{\Pi_I}(\Pi_{\widetilde{v}}) = I_{\widetilde{v}} \quad (*_1)$$

 $\{1\} = Z_{\Pi_{\mathcal{G}}}(Z_{\Pi_{\mathcal{G}}}(\mathrm{Im}(s))) = Z_{\Pi_{I}}(H) \cap \Pi_{\mathcal{G}} \Rightarrow Z_{\Pi_{I}}(H) \hookrightarrow \Pi_{I} \twoheadrightarrow I \text{ is injective}$ Thus, since $\operatorname{Im}(s) \subseteq Z_{\Pi_I}(H)$ by definition,

$$Z_{\Pi_I}(H) = \operatorname{Im}(s) \quad (*_2)$$

$$(*_1), (*_2) \Rightarrow I_{\widetilde{v}} \subseteq \operatorname{Im}(s) \stackrel{\operatorname{Lmm}}{\Rightarrow} I_{\widetilde{v}} = \operatorname{Im}(s)$$

- Main Theorem of §4 —

Suppose: ρ is of PIPSC-type

 $\Pi_{\mathcal{G}} + (\rho: I \to \overline{\operatorname{Aut}(\mathcal{G})} \hookrightarrow \overline{\operatorname{Out}(\Pi_{\mathcal{G}})}) \Rightarrow \Pi_{\mathcal{G}} + \{\text{verticial subgps}\}$

 $(\stackrel{\text{Prp.}\,2.5}{\Rightarrow}\Pi_{\mathcal{G}} + \{\text{verticial subgps}\} + \{\text{nodal subgps}\})$

(follows essentially from Lmm 4.4, (3), and Main Lmm of §4)

- Main Corollary of §4 [CbTpII, Theorem 1.9, (ii)]

 $\square \in \{\circ, \bullet\}$

 \mathcal{G}_{\square} : a semi-graph of anabelioids of pro- Σ PSC-type

 I_{\square} : a profinite group

 $\rho_{\square} \colon I_{\square} \to \operatorname{Aut}(\mathcal{G}_{\square}) \ (\subseteq \operatorname{Out}(\Pi_{\mathcal{G}_{\square}})) \colon \text{a continuous homomorphism of PIPSC-type}$

 $\alpha \colon \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}} \colon$ a continuous isomorphism w/ a commutative diagram

$$I_{\circ} \xrightarrow{\rho_{\circ}} \operatorname{Out}(\Pi_{\mathcal{G}_{\circ}})$$

$$\exists \bigvee_{I_{\bullet} \xrightarrow{\rho_{\bullet}}} \operatorname{Out}(\Pi_{\mathcal{G}_{\bullet}})$$

 $\Rightarrow \alpha$: group-theretically vertical and group-theretically nodal (follows from Main Thm of §4)

$\underline{\text{References}}$

[CbGC]	A Combinatorial Version of the Grothendieck Conjecture
[AbTpI]	Topics in Absolute Anabelian Geometry I: Generalities
[AbTpII]	Topics in Absolute Anabelian Geometry II: Decomposition Groups and
	Endomorphisms
[NodNon]	On the Combinatorial Anabelian Geometry of Nodally Nondegenerate Outer
	Representations
[CbTpI]	Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic
	Curves I: Inertia Groups and Profinite Dehn Twists
[CbTpII]	Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic
	Curves II: Tripods and Combinatorial Cuspidalization
[IUTchI]	Inter-universal Teichmüller Theory I: Construction of Hodge Theaters

scratch paper

scratch paper