A Combinatorial Anabelian Result for Stable Log Curves over Log Points

Yuichiro Hoshi
5 July, 2021
RIMS Workshop
"Combinatorial Anabelian Geometry and Related Topics"
Σ : a nonempty set of prime numbers

Definition

k : an algebraically closed field of characteristic $\notin \Sigma$
$X^{\log }$: a stable log curve/an fs \log scheme $S^{\log } \mathrm{w} / S=\operatorname{Spec}(k)$
Write:
(X, D) : the pointed stable curve $/ k$ associated to $X^{\log }$
$U_{X} \stackrel{\text { def }}{=} X^{\mathrm{sm}} \cap(X \backslash D) \subseteq X$
\mathbb{G} : the dual semi-graph of $X^{\log }$
\underline{v} : a vertex of \mathbb{G}
C_{v} : the irreducible component of X corresponding to v
$X_{v} \stackrel{\text { def }}{=} C_{v} \cap U_{X}$
e : an open edge of $\mathbb{G} \mathrm{w} /$ the branch b that abuts to v
C_{e} : the completion of X at the point corresponding to $e(\cong \operatorname{Spec}(k[[t]]))$
$X_{e} \xlongequal{\text { def }} C_{e} \backslash\{e\}(\cong \operatorname{Spec}(k[[t]][1 / t]))$
$\iota_{b}: X_{e} \rightarrow X_{v}$: the natural morphism corresponding to b
e : a closed edge of $\mathbb{G} \mathrm{w} /$ the two distinct branches b_{1}, b_{2}
that abut to v_{1}, v_{2}, respectively (possibly $v_{1}=v_{2}$)
C_{e} : the completion of X at the node corresponding to $e\left(\cong \operatorname{Spec}\left(k\left[\left[t_{1}, t_{2}\right]\right] /\left(t_{1} t_{2}\right)\right)\right)$ Fix an isomorphism

$X_{e} \stackrel{\text { def }}{=} " \operatorname{Spec}\left(k\left[\left[t_{1}\right]\right]\left[1 / t_{1}\right]\right) \stackrel{\text { fixed }}{=} \operatorname{Spec}\left(k\left[\left[t_{2}\right]\right]\left[1 / t_{2}\right]\right) "$
$\iota_{b_{i}}: X_{e} \hookrightarrow X_{v_{i}}$: the natural morphism corresponding to b_{i}

Definition, continued
k : an algebraically closed field of characteristic $\notin \Sigma$
$X^{\text {log. }}$ a stable \log curve/an fs \log scheme $S^{\log } \mathrm{w} / S=\operatorname{Spec}(k)$
Write:
(X, D) : the associated pointed stable curve $/ k$
\mathbb{G} : the dual semi-graph of $X^{\log }$
v : a vertex of \mathbb{G}
$X_{v} \stackrel{\text { def }}{=} C_{v} \cap U_{X}$
e : an open edge of $\mathbb{G} \mathrm{w} /$ the branch b that abuts to v
$X_{e} \xlongequal{\text { def }} C_{e} \backslash\{e\}(\cong \operatorname{Spec}(k[[t]][1 / t]))$
$\iota_{b}: X_{e} \hookrightarrow X_{v}$: the closed immersion corresponding to b
e : a closed edge of $\mathbb{G} \mathrm{w} /$ the two distinct branches b_{1}, b_{2} that abut to v_{1}, v_{2}, respectively (possibly $v_{1}=v_{2}$)
$X_{e} \stackrel{\text { def }}{=} " \operatorname{Spec}\left(k\left[\left[t_{1}\right]\right]\left[1 / t_{1}\right]\right) \stackrel{\text { fixed }}{=} \operatorname{Spec}\left(k\left[\left[t_{2}\right]\right]\left[1 / t_{2}\right]\right) "$
$\iota_{b_{i}}: X_{e} \hookrightarrow X_{v_{i}}$: the closed immersion corresponding to b_{i}
Define a semi-graph $\mathcal{G}_{X^{\log }}^{\Sigma}$ of anabelioids as follows:

- the underlying semi-graph $\stackrel{\text { def }}{=} \mathbb{G}$
- the anabelioid \mathcal{G}_{v} corresponding to a vertex $v \stackrel{\text { def }}{=} \Sigma$-Fét $\left(X_{v}\right)$
- the anabelioid \mathcal{G}_{e} corresponding to an edge $e \stackrel{\text { def }}{=} \Sigma$-Fét $\left(X_{e}\right)$
- the morphism $b_{*}: \mathcal{G}_{e} \rightarrow \mathcal{G}_{v}$ that corr'g to the branch b of e abutting to v $\stackrel{\text { def }}{=} \mathcal{G}_{e} \rightarrow \mathcal{G}_{v}$ obtained by pulling back by ι_{b}, i.e., $\iota_{b}^{*}: \Sigma$-Fét $\left(X_{v}\right) \rightarrow \Sigma$-Fét $\left(X_{e}\right)$

Definition

\mathcal{G} : a connected semi-graph of anabeliods
$\Rightarrow \mathcal{B}(\mathcal{G})$: the connected anabelioid of $\left(S_{v}, \phi_{e}\right)_{v: \text { a vertex, } e \text { : a closed edge, where }}$

- S_{v} : an object of the connected anabelioid \mathcal{G}_{v}
- $\phi_{e}: b_{1}^{*} S_{v_{1}} \xrightarrow{\sim} b_{2}^{*} S_{v_{2}}:$ an isomorphism in the connected anabelioid \mathcal{G}_{e} (b_{1}, b_{2} are the two distinct branches of e that abut to v_{1}, v_{2}, respectively)

Proposition 1.1

In the above situation:

- \exists a natural continuous isomorphism $\pi_{1}\left(\mathcal{B}\left(\mathcal{G}_{X^{\log }}^{\Sigma}\right)\right)^{\Sigma} \xrightarrow{\sim} \pi_{1}^{\text {adm }}(X, D)^{\Sigma}$
- \exists a natural $\pi_{1}\left(X^{\log }\right)$-conjugacy class of continuous isomorphisms $\pi_{1}\left(\mathcal{B}\left(\mathcal{G}_{X^{\log }}^{\Sigma}\right)\right)^{\Sigma} \xrightarrow{\sim} \operatorname{Ker}\left(\pi_{1}\left(X^{\log }\right)^{\Sigma} \rightarrow \pi_{1}\left(S^{\log }\right)^{\Sigma}\right) \cong \operatorname{Ker}\left(\pi_{1}\left(X^{\log }\right) \rightarrow \pi_{1}\left(S^{\log }\right)\right)^{\Sigma}$

Definition

\mathcal{G} : a semi-graph of anabelioids
$\mathcal{G}: \underline{\text { of (pro- } \Sigma \text {) PSC-type }} \stackrel{\text { def }}{\Leftrightarrow} \exists\left(k, X^{\text {log }}\right)$ as above s.t. $\mathcal{G} \cong \mathcal{G}_{X^{\text {log }}}^{\Sigma}$

Remark
graph of groups (cf., e.g., "Trees" by Serre)
semi-graph of anabelioids ass'd to $X^{\log } \stackrel{\eta ?}{\Leftrightarrow}$ semi-graph of profinite groups ass'd to $X^{\log }$
In order to define and study the notion of the semi-graph of prof. gps ass'd to $X^{\log }$, one has to fix basepoints of all the components of $X^{\log }$ simultaneously.
On the other hand, there is no natural/consistent choice of such basepoints in general.
\Rightarrow The notion of a semi-graph of profinite groups is quite unnatural/unsuitable from the point of view of combinatorial anabelian geometry.

In the remainder of the present $\S 1$:
\mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type
$\widetilde{\mathcal{G}}=\left\{\mathcal{G}^{i} \rightarrow \mathcal{G}\right\}_{i \in I}:$ a universal pro- Σ covering,
i.e., a some cofinal, i.e., in $\mathcal{B}(\mathcal{G})$, collection of connected fét Σ-Galois coverings

Definition
$\Pi_{\mathcal{G}} \stackrel{\text { def }}{=} \lim _{\widetilde{\mathcal{G}} \rightarrow \mathcal{H}^{\text {fin. Gal. }} \mathcal{G}} \operatorname{Aut}(\mathcal{H} / \mathcal{G})$: the PSC-fundamental group of \mathcal{G} (w.r.t. $\widetilde{\mathcal{G}}$)
Proposition 1.2 [CbGC, Remark 1.1.3]
$\Pi_{\mathcal{G}}$: a nonabelian pro- Σ surface group (follows from Prp 1.1)

Definition
a (Galois) $\Pi_{\mathcal{G}}$-covering $\stackrel{\text { def }}{\Leftrightarrow}$ a finite intermediate (Galois) covering of $\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$
Remark
$\forall \Pi_{\mathcal{G}}$-covering has a natural structure of semi-graph of anabelioids of pro- Σ PSC-type.

Definition
$\operatorname{Vert}(\mathcal{G})$: the set of vertices of (the underlying semi-graph of) \mathcal{G}
$\operatorname{Cusp}(\mathcal{G})$: the set of open edges of (the underlying semi-graph of) \mathcal{G}
$\operatorname{Node}(\mathcal{G})$: the set of closed edges of (the underlying semi-graph of) \mathcal{G}
$\operatorname{Edge}(\mathcal{G}) \stackrel{\text { def }}{=} \operatorname{Cusp}(\mathcal{G}) \cup \operatorname{Node}(\mathcal{G})$
$\operatorname{VCN}(\mathcal{G}) \stackrel{\text { def }}{=} \operatorname{Vert}(\mathcal{G}) \cup \operatorname{Cusp}(\mathcal{G}) \cup \operatorname{Node}(\mathcal{G})$
$\square \in\{$ Vert, Cusp, Node, Edge, VCN $\} \Rightarrow \square(\widetilde{\mathcal{G}}) \stackrel{\text { def }}{=} \lim _{\widetilde{\mathcal{G}} \rightarrow \mathcal{H}^{\text {fin. }} \mathrm{Gal}_{\mathcal{G}}} \square(\mathcal{H})$

Definition

$\widetilde{z} \in \operatorname{VCN}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\tilde{z}} \subseteq \Pi_{\mathcal{G}}$: the stablizer of \widetilde{z} w.r.t. $\Pi_{\mathcal{G}} \curvearrowright \square(\widetilde{\mathcal{G}})$, VCN-subgroup associated to \widetilde{z}
a verticial (resp. a cuspidal; a nodal; an edge-like) subgroup $\stackrel{\text { def }}{\ominus}$
a VCN-subgroup associated to $\in \operatorname{Vert}(\overline{\widetilde{\mathcal{G}})(\operatorname{resp}} . \operatorname{Cusp}(\widetilde{\mathcal{G}}) ; \operatorname{Node}(\widetilde{\mathcal{G}}) ; \operatorname{Edge}(\widetilde{\mathcal{G}}))$
Observe: $z \in \operatorname{VCN}(\mathcal{G})$ determines a $\Pi_{\mathcal{G}}$-conjugacy class of VCN-subgroup, i.e., by considering the $\Pi_{\mathcal{G}}$-conjugacy class of $\Pi_{\tilde{z}}$ for some $\operatorname{VCN}(\widetilde{\mathcal{G}}) \ni \widetilde{z} \mapsto z$.
\Rightarrow the notion of "a VCN-subgp ass'd to $\in \operatorname{VCN}(\mathcal{G})$, well-defined up to conjugation"
Definition
$\square \in\{$ Vert, Cusp, Node, Edge\}
$\Pi_{\mathcal{G}}^{\text {ab- }} \subseteq \Pi_{\mathcal{G}}^{\text {ab }}:$ the subgp top'y gen'd by the images of the VCN-subgps ass'd to $\in \square(\widetilde{\mathcal{G}})$ $\Pi_{\mathcal{G}}^{\mathrm{ab} / \square} \stackrel{\text { def }}{=} \Pi_{\mathcal{G}}^{\mathrm{ab}} / \Pi_{\mathcal{G}}^{\mathrm{ab}-\square}$
\Rightarrow
$\stackrel{\rightharpoonup}{-} 0 \rightarrow \Pi_{\mathcal{G}}^{\mathrm{ab}-\square} \rightarrow \Pi_{\mathcal{G}}^{\mathrm{ab}} \rightarrow \Pi_{\mathcal{G}}^{\mathrm{ab} / \square} \rightarrow 0$

- $\Pi_{\mathcal{G}}^{\text {ab-Cusp }}, \Pi_{\mathcal{G}}^{\text {ab-Node }} \subseteq \Pi_{\mathcal{G}}^{\text {ab-Edge }}=\Pi_{\mathcal{G}}^{\text {ab-Cusp }}+\Pi_{\mathcal{G}}^{\text {ab-Node }} \subseteq \Pi_{\mathcal{G}}^{\text {ab-Vert }} \subseteq \Pi_{\mathcal{G}}^{\text {ab }}$
- $\Pi_{\mathcal{G}}^{\mathrm{ab}} \rightarrow \Pi_{\mathcal{G}}^{\mathrm{ab} / \text { Cusp }}, \Pi_{\mathcal{G}}^{\mathrm{ab} / \text { Node }} \rightarrow \Pi_{\mathcal{G}}^{\mathrm{ab} / \text { Edge }} \rightarrow \Pi_{\mathcal{G}}^{\mathrm{ab} / \text { Vert }}$

Definition
\mathcal{G}^{\prime} : a semi-graph of anabelioids of pro- Σ PSC-type
$\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{G}^{\prime}}:$ a continuous (outer) isomorphism

- α : graphic $\stackrel{\text { def }}{\Leftrightarrow}$
$\exists \mathcal{G} \xrightarrow{\sim} \mathcal{G}^{\prime}$ that induces the (outer isomorphism det'd by the) isomorphism $\alpha$$\in\{$ verticial, cuspidal, nodal, edge-like\}
α : group-theoretically $\square \stackrel{\text { def }}{\Leftrightarrow}$
$\alpha\left(\square\right.$ subgp of $\left.\Pi_{\mathcal{G}}\right)$ is \square in $\Pi_{\mathcal{G}^{\prime}}, \alpha^{-1}\left(\square\right.$ subgp of $\left.\Pi_{\mathcal{G}^{\prime}}\right)$ is \square in $\Pi_{\mathcal{G}}$
Proposition 1.3 [CbGC, Proposition 1.5, (ii)]
$\alpha: \Pi_{\mathcal{G}} \xrightarrow{\sim} \Pi_{\mathcal{G}^{\prime}}:$ a continuous outer isomorphism
α : graphic \Leftrightarrow
α : gp-theoretically verticial, gp-theoretically cuspidal, gp-theoretically nodal \Leftrightarrow
α : gp-theoretically verticial, gp-theoretically edge-like
In this situation, an isomorphism $\mathcal{G} \xrightarrow{\sim} \mathcal{G}^{\prime}$ that induces α is unique.
(follows essentially from $\operatorname{Prp} 2.2,2.3,2.4,2.5$ below)

By Prp 1.3, the natural homomorphism $\operatorname{Aut}(\mathcal{G}) \rightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$ is injective.
Let us regard $\operatorname{Aut}(\mathcal{G})$ as a subgroup of $\operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$.
Observe: $\Pi_{\mathcal{G}}$: topologically finitely generated (cf. Prp 1.2)
$\Rightarrow \bigcap_{N \subseteq \Pi_{\mathrm{G}}: \text { open, characteristic }} N=\{1\}$
$\Rightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$ has a natural structure of profinite group, i.e., $\operatorname{Out}\left(\Pi_{\mathcal{G}}\right)=\lim _{\rightleftarrows_{N \subseteq \Pi_{\mathcal{G}}} \text { : open, characteristic }} \operatorname{Out}\left(\Pi_{\mathcal{G}} / N\right)$, w.r.t. which $\operatorname{Aut}(\mathcal{G}) \subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)$ is a closed subgroup.

§2: Foundations of VCN-subgroups

Σ : a nonempty set of prime numbers
\mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type
$\widetilde{\mathcal{G}} \rightarrow \mathcal{G}:$ a universal pro- Σ covering
Proposition 2.1 [CbGC, Remark 1.1.3]
(1) $\tilde{e} \in \operatorname{Edge}(\underset{\mathcal{G}}{ }) \Rightarrow \Pi_{\tilde{e}}\left(\tilde{\leftarrow}\right.$ " $\left.\pi_{1}\left(X_{e}\right)^{\Sigma "}\right) \cong \widehat{\mathbb{Z}}^{\Sigma}$
(2) $\widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\tilde{v}}\left({ }_{\leftarrow}{ }^{*} \pi_{1}\left(X_{v}\right)^{\Sigma "}\right)$: a nonabelian pro- Σ surface group

Proposition 2.2 [CbGC, Proposition 1.2, (ii)]
$\widetilde{z} \in \operatorname{VCN}(\widetilde{\mathcal{G}}) \Rightarrow \Pi_{\tilde{z}}:$ commensurably terminal in $\Pi_{\mathcal{G}}$,
i.e., $\Pi_{\tilde{z}}=C_{\Pi_{\mathcal{G}}}\left(\Pi_{\tilde{z}}\right) \stackrel{\text { def }}{=}\left\{\gamma \in \Pi_{\mathcal{G}} \mid\left[\Pi_{\tilde{z}}: \Pi_{\tilde{z}} \cap \gamma \Pi_{\tilde{z}} \gamma^{-1} \cap \gamma^{-1} \Pi_{\tilde{z}} \gamma\right]<\infty\right\}$

More strongly:
Proposition 2.3 [NodNon, Lemma 1.5]
$\widetilde{e}_{1}, \widetilde{e}_{2} \in \operatorname{Edge}(\widetilde{\mathcal{G}})$
$\widetilde{e}_{1}=\widetilde{e}_{2} \Leftrightarrow \Pi_{\tilde{e}_{1}}=\Pi_{\tilde{e}_{2}} \Leftrightarrow \Pi_{\tilde{e}_{1}} \cap \Pi_{\tilde{e}_{2}} \neq\{1\}$
Proposition 2.4 [NodNon, Lemma 1.7]
$\widetilde{e} \in \operatorname{Edge}(\widetilde{\mathcal{G}}), \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$
\widetilde{e} abuts to $\widetilde{v} \Leftrightarrow \Pi_{\tilde{e}} \subseteq \Pi_{\tilde{v}} \Leftrightarrow \Pi_{\tilde{e}} \cap \Pi_{\tilde{v}} \neq\{1\}$
Proposition 2.5 [NodNon, Lemma 1.9]
$\widetilde{v}_{1}, \widetilde{v}_{2} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$
(1) $\widetilde{v}_{1}=\widetilde{v}_{2} \Leftrightarrow \Pi_{\widetilde{v}_{1}}=\Pi_{\widetilde{v}_{2}}$
(2) $\widetilde{v}_{1} \neq \widetilde{v_{2}}$ but $\exists \widetilde{e} \in \operatorname{Node}(\widetilde{\mathcal{G}})$ s.t. \widetilde{e} abuts both to \widetilde{v}_{1} and to \widetilde{v}_{2} $\Leftrightarrow \Pi_{\tilde{v}_{1}} \neq \Pi_{\tilde{v}_{2}}, \Pi_{\tilde{v}_{1}} \cap \Pi_{\tilde{v}_{2}} \neq\{1\}$

In this situation, $\Pi_{\tilde{v}_{1}} \cap \Pi_{\tilde{v}_{2}}=\Pi_{\tilde{e}}$.

Proposition 2.6 [CbTpII, Propositions 1.4, 1.5]
$H \subseteq \Pi_{\mathcal{G}}$: a closed subgroup,$\in\{$ Vert, Cusp, Node $\}$
(a) $\exists \widetilde{z} \in \square(\widetilde{\mathcal{G}})$ s.t. $H \subseteq \Pi_{\widetilde{z}} \Leftrightarrow$
(b) for $\forall \gamma \in H, \exists \widetilde{z}_{\gamma} \in \square(\widetilde{\mathcal{G}})$ s.t. $\gamma \in \Pi_{\tilde{z}_{\gamma}}$ $\Leftrightarrow(\mathrm{c})$ for $\forall \Pi_{\mathcal{G}}$-covering $\mathcal{H} \rightarrow \mathcal{G}, \operatorname{Im}\left(H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\mathrm{ab} / \square}\right)=\{0\}$

Proof
(a) \Rightarrow (c): immediate
(b) \Rightarrow (a): omit
(c) $\Rightarrow(\mathrm{b})$ in the case where $\Sigma=\{l\}$:

First, we may assume: $H \cong \mathbb{Z}_{l}$ (by replacing H by " $\overline{\langle\gamma\rangle}$ ").
Claim
$\mathcal{H} \rightarrow \mathcal{G}$: a Galois $\Pi_{\mathcal{G}}$-covering
$\underline{\mathcal{H}}$: the $\Pi_{\mathcal{G}}$-covering corresponding to the open subgroup $\Pi_{\mathcal{H}} \cdot H \subseteq \Pi_{\mathcal{G}}$
$\Rightarrow \exists z \in \square(\underline{\mathcal{H}})$ s.t. $\mathcal{H} \rightarrow \underline{\mathcal{H}}$ is totally ramified at z

Proof of Claim

$H \hookrightarrow \Pi_{\mathcal{H}} \cdot H=\Pi_{\underline{\mathcal{H}}} \rightarrow\left(\Pi_{\mathcal{H}} \cdot H\right) / \Pi_{\mathcal{H}}=\Pi_{\underline{\mathcal{H}}} / \Pi_{\mathcal{H}}=\operatorname{Aut}(\mathcal{H} / \underline{\mathcal{H}})$: surjective
Thus, since $H \cong \overline{\mathbb{Z}}_{l}$,

$$
\operatorname{Aut}(\mathcal{H} / \underline{\mathcal{H}}) \cong \mathbb{Z} / l^{n} \mathbb{Z} \text { for some } n \geq 0 \quad\left(*_{1}\right)
$$

Thus, since $\operatorname{Im}\left(H \hookrightarrow \Pi_{\underline{\mathcal{H}}} \rightarrow \Pi_{\underline{\mathcal{H}}}^{\mathrm{ab}}\right) \subseteq \Pi_{\underline{\mathcal{H}}}^{\mathrm{ab}-\square}$ by (c),

$$
\left(\bigoplus_{z \in \square(\mathcal{H})} \operatorname{Im}\left(\Pi_{z} \text { in } \Pi_{\underline{\mathcal{H}}}^{\mathrm{ab}}\right) \rightarrow\right) \quad \Pi_{\underline{\mathcal{H}}}^{\mathrm{ab}-\square} \hookrightarrow \Pi_{\underline{\mathcal{H}}}^{\mathrm{ab}} \stackrel{\left(*_{1}\right)}{\rightarrow} \operatorname{Aut}(\mathcal{H} / \underline{\mathcal{H}}) \text { is surjective } \quad\left(*_{2}\right)
$$

$\left(*_{1}\right),\left(*_{2}\right) \Rightarrow \exists z \in \square(\underline{\mathcal{H}})$ s.t. $\Pi_{z} \hookrightarrow \Pi_{\underline{\mathcal{H}}} \rightarrow \operatorname{Aut}(\mathcal{H} / \underline{\mathcal{H}})$: surjective

By Claim, $\square(\mathcal{H})^{H} \neq \emptyset$ for \forall Galois $\Pi_{\mathcal{G}}$-covering $\mathcal{H} \rightarrow \mathcal{G}$
Thus, since $\square(\mathcal{H})^{H}$ is finite, $\lim _{\tilde{\mathcal{G}} \rightarrow \mathcal{H}^{\text {fin. }} \mathcal{G}^{\text {all. }} \mathfrak{G} .} \square(\mathcal{H})^{H} \neq \emptyset$.
Then it is immediate: $H \subseteq \Pi_{\tilde{z}}$ for $\forall \widetilde{z} \in$ this nonempty limit
$\triangle \in\{$ Vert, Cusp, Node $\}$
\mathcal{G}_{\square} : a semi-graph of anabelioids of pro- Σ PSC-type
$\alpha: \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}}:$ a continuous isomorphism s.t.
for $\forall \Pi_{\mathcal{G}_{0}}$-covering $\mathcal{H}_{\circ} \rightarrow \mathcal{G}_{\circ}$,
if one writes $\mathcal{H}_{\bullet} \rightarrow \mathcal{G}_{\bullet}$ for the corresponding $\Pi_{\mathcal{G}_{\bullet}}$-covering, then

 (follows from Prp 2.6)

$$
\begin{aligned}
& \Pi_{\mathcal{G}}+\{\text { verticial subgps }\} \stackrel{\text { Prp } 2.5}{\Longleftrightarrow} \Pi_{\mathcal{G}}+\{\text { verticial subgps }\}+\{\text { nodal subgps }\} \\
& \operatorname{Prp} 2.6 \Uparrow \downarrow \text { Prp } 2.6 \\
& \Pi_{\mathcal{G}}+\left\{\Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\mathrm{ab} / \text { Vert }}\right\}_{\mathcal{H}} \quad \quad \Pi_{\mathcal{G}}+\left\{\Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\mathrm{ab} / \text { Node }} \rightarrow \Pi_{\mathcal{H}}^{\mathrm{ab} / \text { Vert }}\right\}_{\mathcal{H}}
\end{aligned}
$$

Proposition 2.8 [CbGC, Theorem 1.6, (i)], also [IUTchI, Remark 1.2.2]
$\Pi_{\mathcal{G}}+\left(\left\{\right.\right.$ open subgps of $\left.\Pi_{\mathcal{G}}\right\} \ni H \mapsto \# \operatorname{Cusp}\left(\right.$ the $\Pi_{\mathcal{G}}$-covering corr'g to $\left.\left.H\right)\right)$
$\Rightarrow \Pi_{\mathcal{G}}+$ \{cuspidal subgps $\}$

§3: Cyclotomes Associated to Semi-graphs of Anabelioids of PSC-type

Σ : a nonempty set of prime numbers
\mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type
$\widetilde{\mathcal{G}} \rightarrow \mathcal{G}$: a universal pro- Σ covering

Definition

$\mathcal{G}: \underline{\text { strudy }} \stackrel{\text { def }}{\Leftrightarrow} \forall$ vertex of \mathcal{G} is "of genus ≥ 2 "
(i.e., $\forall \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$, the fin. free $\widehat{\mathbb{Z}}^{\Sigma}-\operatorname{module} \operatorname{Im}\left(\Pi_{\widetilde{v}} \hookrightarrow \Pi_{\mathcal{G}} \rightarrow \Pi_{\mathcal{G}}^{\text {ab/Cusp }}\right)$ is of rank ≥ 4)

In the remainder of the present $\S 3$, for simplicity (cf. $\mathrm{Rmk} *$ below), suppose: \mathcal{G} is sturdy \mathcal{G}^{+}: the semi-graph of anabelioids obtained by removing the open edges form \mathcal{G} $\stackrel{\mathcal{G}: \text { sturdy }}{\Rightarrow} \mathcal{G}^{+}:$of pro- Σ PSC-type
Moreover, we have a surjective continuous homomorphism $\Pi_{\mathcal{G}} \rightarrow \Pi_{\mathcal{G}^{+}}$
whose kernel is topologically normally generated by the cuspidal subgroups, which thus induces an isomorphism $\Pi_{\mathcal{G}}^{\mathrm{ab} / \mathrm{Cusp}} \xrightarrow{\sim} \Pi_{\mathcal{G}^{+}}^{\mathrm{ab}}$.

Definition
$\Lambda_{\mathcal{G}} \stackrel{\text { def }}{=} \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}\left(H^{2}\left(\Pi_{\mathcal{G}^{+}}, \widehat{\mathbb{Z}}^{\Sigma}\right), \widehat{\mathbb{Z}}^{\Sigma}\right)$: the cyclotome associated to \mathcal{G}

- Proposition 3.1
$\Lambda_{\mathcal{G}} \cong \widehat{\mathbb{Z}}^{\Sigma}$
(follows from Prp 1.1)
- Definition
$\chi_{\mathcal{G}}: \operatorname{Aut}(\mathcal{G}) \rightarrow \operatorname{Aut}\left(\Lambda_{\mathcal{G}}\right) \stackrel{\operatorname{Prp} 3.1}{=}\left(\widehat{\mathbb{Z}}^{\Sigma}\right)^{\times}:$the (pro- $\left.\Sigma\right)$ cyclotomic character ass'd to \mathcal{G}
Proposition 3.2 [CbGC, Proposition 1.3]
A natural identification $\Pi_{\mathcal{G}^{+}}^{a b}=\operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}\left(H^{1}\left(\Pi_{\mathcal{G}^{+}}, \widehat{\mathbb{Z}}^{\Sigma}\right), \widehat{\mathbb{Z}}^{\Sigma}\right)(c f . \operatorname{Prp} 1.1)$ and the pairing $H^{1}\left(\Pi_{\mathcal{G}^{+}}, \widehat{\mathbb{Z}}^{\Sigma}\right) \times H^{1}\left(\Pi_{\mathcal{G}^{+}}, \widehat{\mathbb{Z}}^{\Sigma}\right) \rightarrow H^{2}\left(\Pi_{\mathcal{G}^{+}}, \widehat{\mathbb{Z}}^{\Sigma}\right)$ determines a commutative diagram

(follows from Prp 1.1)

Synchronization of Cyclotomes for Cusps
$\widetilde{e} \in \operatorname{Cusp}(\widetilde{\mathcal{G}})$
$Q_{\widetilde{e}}$: the quotient of $\Pi_{\mathcal{G}}$ by the normal closed subgp topologically normally gen'd by the commutator $\left[\Pi_{\mathcal{G}}, \Pi_{\tilde{e}}\right]$ and the Π_{f} 's w/f $\operatorname{Cusp}(\mathcal{G})$ over which \widetilde{e} does not lie $J_{\widetilde{e}} \subseteq Q_{\tilde{e}}$: the image of $\Pi_{\tilde{e}}$
$\stackrel{\operatorname{Prp}}{\Rightarrow}{ }^{1.1}$ - The natural surjective cont. hom. $\left(\widehat{\mathbb{Z}^{\Sigma}} \cong\right) \Pi_{\tilde{e}} \rightarrow J_{\tilde{e}}$ is an isomorphism.
$\bullet 1 \rightarrow J_{\widetilde{e}} \rightarrow Q_{\widetilde{e}} \rightarrow \Pi_{\mathcal{G}^{+}} \rightarrow 1$
Moreover, by Prp 1.1, the image of $\operatorname{id}_{J_{\widetilde{e}}} \in \operatorname{End}_{\widehat{\mathbb{Z}}}{ }^{\Sigma}\left(J_{\widetilde{e}}\right)$ by the fourth arrow of

$$
\begin{aligned}
0 \longrightarrow & H^{1}\left(\Pi_{\mathcal{G}^{+}}, J_{\widetilde{e}}\right) \longrightarrow H^{1}\left(Q_{\widetilde{e}}, J_{\widetilde{e}}\right) \longrightarrow
\end{aligned} H^{1}\left(J_{\widetilde{e}}, J_{\widetilde{e}}\right)^{Q_{\widetilde{e}}} \longrightarrow H^{2}\left(\Pi_{\mathcal{G}^{+}}, J_{\widetilde{e}}\right)
$$

is an isomorphism $\Lambda_{\mathcal{G}} \xrightarrow{\sim} J_{\widetilde{e}}$.
$\mathfrak{s y n}_{\tilde{e}}: \Pi_{\widetilde{e}} \xrightarrow{\sim} \Lambda_{\mathcal{G}}:$
the composite of the natural isom. $\Pi_{\widetilde{e}} \xrightarrow{\sim} J_{\widetilde{e}}$ and the converse of the resulting isom.
Corollary 3.3
$\widetilde{e} \in \operatorname{Cusp}(\widetilde{\mathcal{G}})$
$\alpha \in \operatorname{Aut}(\mathcal{G})\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right)$
$\widetilde{\alpha} \in \operatorname{Aut}\left(\Pi_{\mathcal{G}}\right):$ a lifting of α
Suppose: $\widetilde{\alpha}\left(\Pi_{\tilde{e}}\right)=\Pi_{\widetilde{e}}$
$\left.\Rightarrow \widetilde{\alpha}\right|_{\Pi_{\tilde{e}}} \in \operatorname{Aut}\left(\Pi_{\tilde{e}}\right) \stackrel{\operatorname{Prp}}{ } \stackrel{2.1,(1)}{=}\left(\widehat{\mathbb{Z}}^{\Sigma}\right)^{\times}$is $=\chi_{\mathcal{G}}(\alpha)$
(follows from Synchronization of Cyclotomes for Cusps)

Lemma 3.4
I : a profinite group
$\rho: I \rightarrow \operatorname{Aut}(\mathcal{G})\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right):$ a continuous homomorphism
Suppose: $\exists l \in \Sigma$ s.t. $\operatorname{Im}\left(I \xrightarrow{\rho} \operatorname{Aut}(\mathcal{G}) \xrightarrow{\chi \mathcal{G}}\left(\widehat{\mathbb{Z}}^{\Sigma}\right)^{\times} \rightarrow \mathbb{Z}_{l}^{\times}\right) \subseteq \mathbb{Z}_{l}^{\times}: \underline{\text { open }}$
$\Pi_{\mathcal{G}}+\left(\rho: I \rightarrow \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right) \Rightarrow \# \operatorname{Cusp}(\mathcal{G})$

First, by $\operatorname{Prp} 1.1: \quad \Pi_{\mathcal{G}}:$ free pro- $\Sigma \Leftrightarrow \# \operatorname{Cusp}(\mathcal{G})>0$
\Rightarrow We may assume: $\# \operatorname{Cusp}(\mathcal{G})>0$
V : a finite dimensional \mathbb{Q}_{l}-vector space equipped $\mathrm{w} /$ a continuous action of I
$\Rightarrow \bullet \tau(I, V)$: the sum of the dimensions of the subquot.s $V_{i} / V_{i+1} \mathrm{w} /$ triv. act. of I w.r.t. a " $\mathbb{Q}_{l}[I]$-composition series" $\{0\}=V_{n} \subseteq \ldots \subseteq V_{0}=V$

- $\tau(V)=\max _{J \subseteq I: \text { open subgp }} \tau(J, V)$
$\square \in\left\{\mathcal{G}, \mathcal{G}^{+}\right\} \Rightarrow V_{\square} \stackrel{\text { def }}{=} \Pi_{\square}^{a b} \otimes_{\widehat{\mathbb{Z}}^{\Sigma}} \mathbb{Q}_{l}\left(\chi^{-1}\right), W_{\square} \stackrel{\text { def }}{=} \operatorname{Hom}_{\widehat{\mathbb{Z}}^{\Sigma}}\left(\Pi_{\square}^{a b}, \mathbb{Q}_{l}\right)$
$\Rightarrow \bullet \# \operatorname{Cusp}(\mathcal{G})-1 \stackrel{\text { Prp } 1.1}{=} \operatorname{dim}_{\mathbb{Q}_{l}}\left(V_{\mathcal{G}}\right)-\operatorname{dim}_{\mathbb{Q}_{l}}\left(V_{\mathcal{G}^{+}}\right) \stackrel{\text { Cor } 3.3}{=} \tau\left(V_{\mathcal{G}}\right)-\tau\left(V_{\mathcal{G}^{+}}\right)$
- $\tau\left(V_{\mathcal{G}^{+}}\right) \stackrel{\operatorname{Prp} 3.2}{=} \tau\left(W_{\mathcal{G}^{+}}\right)$
- $\tau\left(W_{\mathcal{G}}\right) \stackrel{\operatorname{Prp} \stackrel{1.1,}{=}, 2.2\left(W_{\mathcal{G}^{+}}\right)}{ }$
$\Rightarrow \# \operatorname{Cusp}(\mathcal{G})=1+\tau\left(V_{\mathcal{G}}\right)-\tau\left(W_{\mathcal{G}}\right)$

Corollary 3.5 [AbTpI, Lemma 4.5]
I : a profinite group
$\rho: I \rightarrow \operatorname{Aut}(\mathcal{G})\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right):$ a continuous homomorphism
Suppose: $\exists l \in \Sigma$ s.t. $\operatorname{Im}\left(I \xrightarrow{\rho} \operatorname{Aut}(\mathcal{G}) \xrightarrow{\chi \mathcal{G}}\left(\widehat{\mathbb{Z}}^{\Sigma}\right)^{\times} \rightarrow \mathbb{Z}_{l}^{\times}\right) \subseteq \mathbb{Z}_{l}^{\times}$: open
$\Pi_{\mathcal{G}}+\left(\rho: I \rightarrow \operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right) \Rightarrow \Pi_{\mathcal{G}}+\{$ cuspidal subgps $\}$
(follows essentially from Prp 2.8, Cor 3.3, and Lmm 3.4)
Corollary 3.6
$\square \in\{\circ, \bullet\}$
\mathcal{G}_{\square} : a semi-graph of anabelioids of pro- Σ PSC-type
$I_{\square}:$ a profinite group
$\rho_{\square}: I_{\square} \rightarrow \operatorname{Aut}\left(\mathcal{G}_{\square}\right)\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}_{\square}}\right)\right):$ a continuous homomorphism
Suppose: $\exists l_{\square} \in \Sigma_{\square}$ s.t. $\operatorname{Im}\left(I_{\square} \xrightarrow{\rho} \operatorname{Aut}\left(\mathcal{G}_{\square}\right) \xrightarrow{\chi_{G}}\left(\widehat{\mathbb{Z}}^{\Sigma}\right)^{\times} \rightarrow \mathbb{Z}_{l_{\square}}^{\times}\right) \subseteq \mathbb{Z}_{l_{\square}}^{\times}$: open
$\alpha: \Pi_{\mathcal{G}_{\circ}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}}:$ a continuous isomorphism w/ a commutative diagram

$\Rightarrow \alpha$: group-theretically cuspidal
(follows essentially from Cor 3.5)

Remark *
One may define/establish

- the cyclotome,
- the cyclotomic character, and
- synchronization of cyclotomes for cusps
for a general (i.e., not necessarily sturdy) semi-graph of anabelioids of PSC-type (cf. [CbGC, §2], [CbTpI, §3]).

§4: A Combinatorial Anabelian Result for Stable Log Curves over Log Points

Σ : a nonempty set of prime numbers
\mathcal{G} : a semi-graph of anabelioids of pro- Σ PSC-type
$\widetilde{\mathcal{G}} \rightarrow \mathcal{G}:$ a universal pro- Σ covering
I: a profinite group
$\rho: I \rightarrow \operatorname{Aut}(\mathcal{G})\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right):$ a continuous homomorphism

Definition
$\widetilde{v} \in \operatorname{Vert}(\mathcal{G}) \Rightarrow I_{\widetilde{v}} \stackrel{\text { def }}{=} Z_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right) \subseteq D_{\widetilde{v}} \stackrel{\text { def }}{=} N_{\Pi_{I}}\left(\Pi_{\tilde{z}}\right) \subseteq \Pi_{I}:$
the inertia/decomposition subgroups of Π_{I} associated to $\widetilde{v} \in \operatorname{Vert}(\mathcal{G})$
Lemma 4.1
$\widetilde{z} \in \operatorname{VCN}(\mathcal{G}) \Rightarrow D_{\widetilde{z}} \cap \Pi_{\mathcal{G}}=\Pi_{\tilde{z}}$
(follows from Prp 2.2)
Definition
(1) $\rho:$ of IPSC-type $\stackrel{\text { def }}{\Leftrightarrow}$

- $\exists k$: an algebraically closed field of characteristic $\notin \Sigma$
- $\exists X^{\log }$: a stable log curve/the standard $\log \operatorname{point} \operatorname{Spec}(k)^{\log } \stackrel{\text { def }}{=}$ " $(\operatorname{Spec}(k), \mathbb{N})$ "
- $\exists \alpha: \mathcal{G}_{X^{\log }}^{\sim} \xrightarrow{\sim} \mathcal{G}$ s.t.

(2) ρ : of PIPSC-type $\stackrel{\text { def }}{\Leftrightarrow} I \cong \widehat{\mathbb{Z}}^{\Sigma},\left.\rho\right|_{\exists \text { an open subgroup of } I}$ is of IPSC-type

One most important property of a cont. homomorphism of PIPSC-type is as follows:
Lemma 4.2 [CbGC, Proposition 2.6]
Suppose: ρ is of PIPSC-type
$M \subseteq \Pi_{\mathcal{G}}^{\text {ab }}:$ a sub- $\widehat{\mathbb{Z}}^{\Sigma}$-module
$M \subseteq \Pi_{\mathcal{G}}^{\text {ab-Vert }} \Leftrightarrow \exists$ an open subgp $J \subseteq I$ s.t. $J \curvearrowright \Pi_{\mathcal{G}}^{a b}$ induces the trivial action on M (follows essentially from weight-monodromy conj. for Jacobian varieties of curves)

Lemma 4.3 [AbTpII, Proposition 1.3, (iii), (iv)]
Suppose: ρ is of IPSC-type
(1) $\widetilde{v} \in \operatorname{Vert} \overline{(\widetilde{\mathcal{G}}) \Rightarrow I_{\widetilde{v}} \hookrightarrow} \Pi_{I} \rightarrow I$: an isomorphism
(2) $\widetilde{v}, \widetilde{w} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$
$\widetilde{v}=\widetilde{w} \Leftrightarrow I_{\widetilde{v}}=I_{\widetilde{w}}$
(follows from some considerations on the log structures involved)
Lemma 4.4
$\widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$
Suppose: ρ is of IPSC-type
(1) $D_{\widetilde{v}}=I_{\widetilde{v}} \times \Pi_{\widetilde{v}}$
(2) $N_{\Pi_{I}}\left(I_{\widetilde{v}}\right)=D_{\widetilde{v}}\left({ }^{(1) ;} \stackrel{\operatorname{Lmm}}{\Rightarrow}{ }^{4.3,(1)} N_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right)=\Pi_{\widetilde{v}}\right)$
(3) $Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right)\right)=\{1\}$

Proof
(1):
$I_{v} \cdot \Pi_{v} \subseteq D_{v}$ by definition
$\stackrel{\operatorname{Lmm}}{ }{ }^{\text {4.1. 4.3, }}{ }^{(1)} I_{v} \cdot \Pi_{v}=D_{v} \quad\left(\mathrm{cf} .1 \rightarrow \Pi_{\mathcal{G}} \rightarrow \Pi_{I} \rightarrow I \rightarrow 1\right)$
Thus, since $Z\left(\Pi_{v}\right)=\{1\}\left(\right.$ cf. Prp 2.1, (2)), $I_{v} \times \Pi_{v}=D_{v}$.

(2):

$$
\begin{aligned}
& N_{\Pi_{I}}\left(I_{\widetilde{\imath}}\right) \supseteq D_{\widetilde{v}}: \text { by }(1) \\
& N_{\Pi_{I}}\left(I_{\widetilde{v}}\right) \subseteq D_{\widetilde{v}}: \\
& \quad \gamma \in N_{\Pi_{I}}\left(I_{\widetilde{v}}\right) \\
& \quad \Rightarrow I_{\widetilde{v}}=\gamma I_{\widetilde{v}} \gamma^{-1}=\gamma Z_{\Pi_{I}}\left(\Pi_{\widetilde{v}}\right) \gamma^{-1}=Z_{\Pi_{I}}\left(\gamma \Pi_{\widetilde{v}} \gamma^{-1}\right)=Z_{\Pi_{I}}\left(\Pi_{\widetilde{v} \gamma}\right)=I_{\widetilde{v} \gamma} \\
& \quad \stackrel{\text { Lmm 4.3, (2) }}{ }{ }^{2}=\widetilde{v}^{\gamma} \Rightarrow \Pi_{\widetilde{v}}=\Pi_{\widetilde{v} \gamma}=\gamma \Pi_{\widetilde{v}} \gamma^{-1} \Rightarrow \gamma \in N_{\Pi_{I}}\left(\Pi_{\widetilde{v}}\right)=D_{\widetilde{v}}
\end{aligned}
$$

(3):
$\Pi_{\tilde{v}} \subseteq Z_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right) \subseteq N_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right) \stackrel{(2)}{=} \Pi_{\tilde{v}}$
$\Rightarrow \bar{Z}_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right)=\bar{\Pi}_{\widetilde{v}}$
$\Rightarrow Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\mathcal{G}}}\left(I_{\widetilde{v}}\right)\right)=Z_{\Pi_{\mathcal{G}}}\left(\Pi_{\widetilde{v}}\right) \stackrel{\operatorname{Prp} 2.2}{=} Z\left(\Pi_{\widetilde{v}}\right) \stackrel{\operatorname{Prp}}{\stackrel{2.1, ~(2)}{=}}\{1\}$

Main Lemma of $\S 4[\mathrm{CbTpII}$, Theorem 1.6, (iv)]
Suppose: ρ is of IPSC-type
s : a splitting of $\Pi_{I} \rightarrow I$ s.t. $Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\mathcal{G}}}(\operatorname{Im}(s))\right)=\{1\}$
$\Rightarrow \exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $\operatorname{Im}(s)=I_{\widetilde{v}}\left(\stackrel{\mathrm{Lmm} 4.4,(2)}{\Rightarrow} N_{\Pi_{\mathcal{G}}}(\operatorname{Im}(s)):\right.$ verticial $)$

Proof

$H \stackrel{\text { def }}{=} Z_{\Pi_{\mathcal{G}}}(\operatorname{Im}(s))$
$\stackrel{\text { Lmm }}{\Rightarrow}{ }^{4.2}$ for $\forall \Pi_{\mathcal{G}}$-covering $\mathcal{H} \rightarrow \mathcal{G}, \operatorname{Im}\left(H \cap \Pi_{\mathcal{H}} \hookrightarrow \Pi_{\mathcal{H}} \rightarrow \Pi_{\mathcal{H}}^{\text {ab/Vert }}\right)=\{0\}$
$\stackrel{\operatorname{Prp}}{\Rightarrow}{ }^{2.6} \exists \widetilde{v} \in \operatorname{Vert}(\widetilde{\mathcal{G}})$ s.t. $H \subseteq \Pi_{\widetilde{v}} \Rightarrow$

$$
Z_{\Pi_{I}}(H) \supseteq Z_{\Pi_{I}}\left(\Pi_{\tilde{v}}\right)=I_{\tilde{v}} \quad\left(*_{1}\right)
$$

$\{1\}=Z_{\Pi_{\mathcal{G}}}\left(Z_{\Pi_{\mathcal{G}}}(\operatorname{Im}(s))\right)=Z_{\Pi_{I}}(H) \cap \Pi_{\mathcal{G}} \Rightarrow Z_{\Pi_{I}}(H) \hookrightarrow \Pi_{I} \rightarrow I$ is injective
Thus, since $\operatorname{Im}(s) \subseteq Z_{\Pi_{I}}(H)$ by definition,

$$
Z_{\Pi_{I}}(H)=\operatorname{Im}(s) \quad\left(*_{2}\right)
$$

$\left(*_{1}\right),\left(*_{2}\right) \Rightarrow I_{\widetilde{v}} \subseteq \operatorname{Im}(s) \stackrel{\text { Lmm 4.3, }}{\Rightarrow}{ }^{(1)} I_{\widetilde{v}}=\operatorname{Im}(s)$
Main Theorem of $\S 4$
Suppose: ρ is of PIPSC-type
$\Pi_{\mathcal{G}}+\left(\rho: I \rightarrow \overline{\left.\operatorname{Aut}(\mathcal{G}) \hookrightarrow \operatorname{Out}\left(\Pi_{\mathcal{G}}\right)\right) \Rightarrow \Pi_{\mathcal{G}}+\{\text { verticial subgps }\}}\right.$
$\left(\stackrel{\text { Prp }}{\Rightarrow}{ }^{2.5} \Pi_{\mathcal{G}}+\{\right.$ verticial subgps $\}+\{$ nodal subgps $\left.\}\right)$
(follows essentially from Lmm 4.4, (3), and Main Lmm of §4)
Main Corollary of $\S 4$ [CbTpII, Theorem 1.9, (ii)]
$\square \in\{0, \bullet\}$
\mathcal{G}_{\square} : a semi-graph of anabelioids of pro- Σ PSC-type
$I_{\square}:$ a profinite group
$\rho_{\square}: I_{\square} \rightarrow \operatorname{Aut}\left(\mathcal{G}_{\square}\right)\left(\subseteq \operatorname{Out}\left(\Pi_{\mathcal{G}_{\square}}\right)\right):$ a continuous homomorphism of PIPSC-type
$\alpha: \Pi_{\mathcal{G}_{o}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{\bullet}}:$ a continuous isomorphism w/a commutative diagram

$\Rightarrow \alpha$: group-theretically verticial and group-theretically nodal (follows from Main Thm of §4)

References

[CbGC] A Combinatorial Version of the Grothendieck Conjecture
[AbTpI] Topics in Absolute Anabelian Geometry I: Generalities
[AbTpII] Topics in Absolute Anabelian Geometry II: Decomposition Groups and Endomorphisms
[NodNon] On the Combinatorial Anabelian Geometry of Nodally Nondegenerate Outer Representations
[CbTpI] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves I: Inertia Groups and Profinite Dehn Twists
[CbTpII] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II: Tripods and Combinatorial Cuspidalization
[IUTchI] Inter-universal Teichmüller Theory I: Construction of Hodge Theaters
scratch paper
scratch paper

